WideScreen™ Biomarker Assay Kits
co-developed with Rules Based Medicine

WideScreen Rat Kidney Toxicity Assays
For the Luminex® xMAP® Technology platform
WideScreen™ Rat Kidney Toxicity Assays

The current approach to evaluating drug-induced nephrotoxicity in preclinical studies is to measure serum creatinine and blood urea nitrogen (BUN) levels in rats. The ability of the kidney to excrete creatinine and urea nitrogen decreases with damage, resulting in increased serum creatinine and BUN. The utility of creatinine and BUN as markers of kidney injury is currently under question. Serum levels of BUN are influenced by protein intake, and creatinine levels fluctuate as a function of age, muscle mass, and other clearance mechanisms. Moreover, serum creatinine and BUN levels rise only when significant kidney injury has occurred, compensatory regenerative mechanisms initially maintain kidney function during early stage damage. Creatinine and BUN level analysis is often combined with histopathological examination of kidney sections, a labor intensive terminal technique that hampers the ability to perform time course studies.

The Critical Path Institute, through the public-private Predictive Safety Testing Consortium (PSTC), initiated a program to develop improved testing methods to identify drug-induced renal damage. Rules Based Medicine (RBM) collaborated with the PSTC by developing assays and providing data on thousands of rat urine samples submitted for analysis by Novartis AG.

The results of the PSTC study were submitted to the FDA and EMEA in 2008, leading to the listing of seven urinary kidney damage biomarkers.

EMD, in partnership with RBM, has now released assay kits that include four of the new accepted biomarkers (KIM-1, β2-microglobulin (β2m), cystatin C, and clusterin), along with six other key protein markers of kidney injury (GST-α, TIMP-1, VEGF, calbindin, NGAL, and osteopontin).

Two assay panels are available:

- **WideScreen™ Rat Kidney Toxicity Panel 1**
 - β2m
 - GST-α
 - KIM-1
 - TIMP-1
 - VEGF

- **WideScreen™ Rat Kidney Toxicity Panel 2**
 - Calbindin
 - Clusterin
 - Cystatin C
 - NGAL
 - Osteopontin

Experimental Workflow

1. **Compound Administered To Rat**
2. **Kidney Damage**
3. **Sample Collection**
 - Day 0
 - Day 1
 - Day 3
 - Day 7
 - Control
 - Low Dose
 - High Dose
4. **Run Assay**
5. **Evaluation of Results**

![Graph](chart.png)
The WideScreen™ Rat Kidney Toxicity Panels were used to investigate time- and dose-related changes in the concentration of nephrotoxicity biomarkers in urine from rats treated with the aminoglycoside antibiotic gentamicin for 7 days. Gentamicin was administered to rats (n = 5 per dose group) by s.c. injections twice daily at doses of 0 mg/kg bw (Control), 60 mg/kg bw (Low Dose), or 120 mg/kg bw (High Dose). Urine samples were collected using metabolic cages and stored at -80°C until analysis. All values were multiplied by the appropriate dilution factor to represent the undiluted sample.

Performance Characteristics

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Standard Range</th>
<th>Assay LDD*</th>
<th>Average Recovery from Urine</th>
<th>Linearity of Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>β2m</td>
<td>0.29-636 µg/ml 2.8 µg/ml</td>
<td>78%</td>
<td></td>
<td>1:4 90%</td>
</tr>
<tr>
<td>GST-α</td>
<td>1.9-4255 ng/ml 34 ng/ml</td>
<td>79%</td>
<td></td>
<td>1:10 82%</td>
</tr>
<tr>
<td>KIM-1</td>
<td>0.049-106 ng/ml 0.049 ng/ml</td>
<td>121%</td>
<td></td>
<td>1:4 100%</td>
</tr>
<tr>
<td>TIMP-1</td>
<td>0.011-24 ng/ml 0.011 ng/ml</td>
<td>73%</td>
<td></td>
<td>1:10 110%</td>
</tr>
<tr>
<td>VEGF</td>
<td>1.7-3786 pg/ml 1.7 pg/ml</td>
<td>106%</td>
<td></td>
<td>1:10 110%</td>
</tr>
</tbody>
</table>

*least detectable dose

Note: Dilutions vary; see User Protocol TB622 for details.
Performance Characteristics

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Standard Range</th>
<th>Assay LDD*</th>
<th>Average Recovery from Urine</th>
<th>Linearity of Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calbindin</td>
<td>0.10-225 ng/ml</td>
<td>0.10 ng/ml</td>
<td>100%</td>
<td>1:100 99%</td>
</tr>
<tr>
<td>Clustering</td>
<td>0.37-800 ng/ml</td>
<td>0.021 ng/ml</td>
<td>100%</td>
<td>1:200 100%</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>0.021-45 ng/ml</td>
<td>0.021 ng/ml</td>
<td>100%</td>
<td>1:100 100%</td>
</tr>
<tr>
<td>NGAL</td>
<td>0.91-2000 ng/ml</td>
<td>4.9 ng/ml</td>
<td>92%</td>
<td>1:200 100%</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>0.014-30 ng/ml</td>
<td>0.014 ng/ml</td>
<td>107%</td>
<td>1:400 100%</td>
</tr>
</tbody>
</table>

*Analyses vary; see User Protocol TB523 for details.

Protein Function and Damaged Region

<table>
<thead>
<tr>
<th>Protein</th>
<th>Function</th>
<th>Damaged region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calbindin</td>
<td>Calcium binding protein found in epithelial cells, including distal tubular cells and cortical collecting tubules of the kidney.</td>
<td>Proximal tubule Glomerulus</td>
</tr>
<tr>
<td>Clustering</td>
<td>Conserved protein induced during tissue injury or remodeling.</td>
<td>Proximal tubule Distal tubule</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>Extracellular inhibitor of cysteine proteases normally expressed in vascular wall smooth muscle cells.</td>
<td>Glomerulus</td>
</tr>
<tr>
<td>NGAL</td>
<td>Expressed in kidney cells as a protective mechanism during the inflammatory response.</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>Multifunctional glycoprotein with key immunomodulatory roles such as enhancement of IFN-γ and IL-12, and downregulation of IL-10 expression.</td>
<td>Proximal tubule Loop of Henle Distal tubule</td>
</tr>
</tbody>
</table>

*least detectable dose (LDD) were plotted on the x-axis. Statistically significant changes compared to controls are denoted as: *p < 0.05, **p < 0.01 and ***p < 0.001. Kidney toxicity markers C2m and KIM-1 were found at significantly elevated levels in the gentamicin-treated animals (day 7), indicating renal damage. Many animals also showed elevated levels of GST-α, TIMP-1 and VEGF by day 7, but these differences fall short of statistical significance due to the variability of values within the small sample size. Data were generated in collaboration with D. Hoffmann and A. Mally (Department of Toxicology, University of Würzburg, Germany).
In 2008 the Predictive Safety Testing Consortium (PSTC), a public-private consortium led by the Critical Path Institute (C-Path) submitted a list of urinary biomarkers indicative of drug-induced kidney damage to the FDA and EMEA regulatory authorities. The FDA and EMEA have issued new guidelines on the submission of the biomarkers as indicators of kidney damage in pre-clinical studies.

Rules Based Medicine worked with the members of the PSTC to develop the assays used in the kidney toxicity study, and made the assays available in the Rat Kidney MAP testing service. EMD and Rules Based Medicine have collaborated to develop these assays as commercially available kits, exclusively for the Luminex® xMAP® Technology platform, to support preclinical rat nephrotoxicity studies.

WideScreen™ Assays using xMAP® Technology are immunosandwich assays immobilized on microparticle beads that are detected using a Luminex instrument (e.g., Luminex 100 IS™ or 200™ Systems). Using uniquely identifiable beads, multiple protein targets can be simultaneously quantified from a single sample. The Luminex instrument employs advanced fluidics and dual lasers to detect the bead identity and the amount of bound reporter. Standard curves generated using purified proteins enable the quantification of experimental samples.
WideScreen™ Rat Kidney Toxicity Panel 1

Cat. No. 72164-3 96 Tests

A pre-mixed multiplex bead kit of quantitative antibody-based assays for simultaneous detection of five biomarkers of kidney damage in rat: β2m, GST-α, KIM-1, TIMP-1, and VEGF.

The kit includes all the reagents and buffers needed to analyze the above proteins in urine using the Luminex® xMAP® System:

- Rat Kidney Toxicity Panel 1 Capture Beads
- Rat Kidney Toxicity Panel 1 Detection Antibodies
- Rat Kidney Toxicity Panel 1 Control 1
- Rat Kidney Toxicity Panel 1 Control 2
- 1X Assay Buffer Type 2
- Rat Kidney Toxicity Panel 1 Blocking Buffer
- 1X Sample Dilution Buffer Type 3
- Standard Curve Diluent Type 4
- 15X Streptavidin-Phycoerythrin
- 96-well Filter Plate and Sealer

WideScreen™ Rat Kidney Toxicity Panel 2

Cat. No. 72174-3 96 Tests

A pre-mixed multiplex bead kit of quantitative antibody-based assays for simultaneous detection of five biomarkers of kidney damage in rat: calbindin, clusterin, cystatin C, NGAL, and osteopontin.

The kit includes all the reagents and buffers needed to analyze the above proteins in urine using the Luminex® xMAP® System:

- Rat Kidney Toxicity Panel 2 Capture Beads
- Rat Kidney Toxicity Panel 2 Detection Antibodies
- Rat Kidney Toxicity Panel 2 Standards Mix
- Rat Kidney Toxicity Panel 2 Control 1
- Rat Kidney Toxicity Panel 2 Control 2
- 1X Assay Buffer Type 2
- Rat Kidney Toxicity Panel 2 Blocking Buffer
- 1X Sample Dilution Buffer Type 3
- Standard Curve Diluent Type 5
- 15X Streptavidin-Phycoerythrin
- 96-well Filter Plate and Sealer

Due to different sample dilution requirements WideScreen™ Rat Kidney Toxicity Panels 1 and 2 should not be multiplexed together.

Visit www.novagen.com/widescreen for the latest information:
- Detailed Certificates of Analysis
- Validation information
- Protocols
- Download scientific posters
- Application articles and publications
- Pricing
- Information on upcoming panels and assays
- ...and more!

For more information or to order Novagen products, contact EMD

Orders:
Phone 800 854 3417
Fax 800 776 0999

Technical Support:
Phone 800 628 8470
E-mail novagen@emdchemicals.com

Visit our website:
www.emdbiosciences.com/novagen

You can also order Novagen products through our distribution partner, VWR International

Phone 800 932 5000
Web www.vwr.com

Printed in the USA